RELATIVE ATTACHED PRIMES AND COREGULAR SEQUENCES
نویسندگان
چکیده
منابع مشابه
Note on regular and coregular sequences
Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.
متن کاملPrimes in Divisibility Sequences
We give an overview of two important families of divisibility sequences: the Lehmer–Pierce family (which generalise the Mersenne sequence) and the elliptic divisibility sequences. Recent computational work is described, as well as some of the mathematics behind these sequences.
متن کاملAbsent Sequences: Nullomers and Primes
We describe a new publicly available algorithm for identifying absent sequences, and demonstrate its use by listing the smallest oligomers not found in the human genome (human "nullomers"), and those not found in any reported genome or GenBank sequence ("primes"). These absent sequences define the maximum set of potentially lethal oligomers. They also provide a rational basis for choosing artif...
متن کاملTOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES
Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna (M)=T. As an application, we give some relationships between top local cohomology modules and top f...
متن کاملPrimes Generated by Recurrence Sequences
will contain infinitely many prime terms — known as Mersenne primes. The Mersenne prime conjecture is related to a classical problem in number theory concerning perfect numbers. A whole number is said to be perfect if, like 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14, it is equal to the sum of all its divisors apart from itself. Euclid pointed out that 2k−1(2k − 1) is perfect whenever 2 − 1 is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2013
ISSN: 1027-5487
DOI: 10.11650/tjm.17.2013.3055