Relatively projective groups as absolute Galois groups
نویسندگان
چکیده
منابع مشابه
Relatively projective groups as absolute Galois groups
By two well-known results, one of Ax, one of Lubotzky and van den Dries, a profinite group is projective iff it is isomorphic to the absolute Galois group of a pseudo-algebraically closed field. This paper gives an analogous characterization of relatively projective profinite groups as absolute Galois groups of regularly closed fields.
متن کاملProducts of absolute Galois groups ∗
If the absolute Galois group GK of a field K is a direct product GK = G1 × G2 then one of the factors is prosolvable and either G1 and G2 have coprime order or K is henselian and the direct product decomposition reflects the ramification structure of GK . So, typically, the direct product of two absolute Galois groups is not an absolute Galois group. In contrast, free (profinite) products of ab...
متن کاملGalois Groups as Permutation Groups
Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...
متن کاملDetecting Pro-p-groups That Are Not Absolute Galois Groups
Let p be a prime. It is a fundamental problem to classify the absolute Galois groups GF of fields F containing a primitive pth root of unity ξp. In this paper we present several constraints on such GF , using restrictions on the cohomology of index p normal subgroups from [LMS]. In section 1 we classify all maximal p-elementary abelian-by-order p quotients of these GF . In the case p > 2, each ...
متن کاملHyperelliptic Jacobians and Projective Linear Galois Groups
In [9] the author proved that in characteristic 0 the jacobian J(C) = J(Cf ) of a hyperelliptic curve C = Cf : y 2 = f(x) has only trivial endomorphisms over an algebraic closure Ka of the ground field K if the Galois group Gal(f) of the irreducible polynomial f ∈ K[x] is “very big”. Namely, if n = deg(f) ≥ 5 and Gal(f) is either the symmetric group Sn or the alternating group An then the ring ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2002
ISSN: 0021-2172,1565-8511
DOI: 10.1007/bf02784528