Remarks on a theorem of Perron
نویسندگان
چکیده
منابع مشابه
Remarks on a Theorem Of
In a recent paper E. J. McShane [3]2 has given a theorem which is the common core of a variety of results about Baire sets, Baire functions, and convex sets in topological spaces including groups and linear spaces. In general terms his theorem states that if J is a family of open maps defined in one topological space Xi into another, X2, the total image JiS) of a second category Baire set S in ...
متن کاملA Note on the Proof of the Perron-Frobenius Theorem
This paper provides a simple proof for the Perron-Frobenius theorem concerned with positive matrices using a homotopy technique. By analyzing the behaviour of the eigenvalues of a family of positive matrices, we observe that the conclusions of Perron-Frobenius theorem will hold if it holds for the starting matrix of this family. Based on our observations, we develop a simple numerical technique...
متن کاملRemarks on Pickands theorem
In this article we present Pickands theorem and his double sum method. We follow Piterbarg’s proof of this theorem. Since his proof relies on general lemmas we present a complete proof of Pickands theorem using Borell inequality and Slepian lemma. The original Pickands proof is rather complicated and is mixed with upcrossing probabilities for stationary Gaussian processes. We give a lower bound...
متن کاملRemarks on a Theorem of Zygmund
A well-known theorem of Zygmund (6) states that if n 1 < n 2 <. .. is a sequence of integers satisfying a (1) n~ +i/n~ > l+c (c > 0), k=1 converges for at least one x ; in fact the set of x for which (2) converges is of power c in any interval. Paley and Mary Weiss (5) extended this theorem for power series, i .e. (3) Y a i.znk k=1 converges for at least one z with I z I = 1 ; in fact the set o...
متن کاملStochastic Nonlinear Perron-frobenius Theorem∗
We establish a stochastic nonlinear analogue of the PerronFrobenius theorem on eigenvalues and eigenvectors of positive matrices. The result is formulated in terms of an automorphism T of a probability space (Ω,F , P ) and a random mapping D(ω, ·) : R+ → R+. Under assumptions of monotonicity and homogeneity of D(ω, ·), we prove the existence of scalar and vector measurable functions α(ω) > 0 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2016
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.09.034