Remarks on Seshadri constants

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Seshadri Constants

Given a smooth complex projective variety X and an ample line bundle L on X. Fix a point x ∈ X. We consider the question, are there conditions which guarantee the maxima of the Seshadri constant of L at x, i.e ε(L, x) = n √ L? We give a partial answer for surfaces and find examples where the answer to our question is negative. If (X,Θ) is a general principal polarized abelian surface, then ε(Θ,...

متن کامل

Seshadri constants on algebraic surfaces

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Seshadri constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Very ample line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Bounds on global Seshadri constants . . . . . . . . . . . . . . . . . . . . . . . . 9 4. The degree of sub-maximal cu...

متن کامل

Bounds for Seshadri Constants

Introduction In this paper we present an alternative approach to the boundedness of Seshadri constants of nef and big line bundles at a general point of a complex–projective variety. Seshadri constants ε(L, x), which have been introduced by Demailly [De92], measure the local positivity of a nef line bundle L at a point x ∈ X of a complex–projective variety X, and can be defined as ε(L, x) := in...

متن کامل

Computing Seshadri Constants on Smooth Toric Surfaces

Abstract. In this paper we compute the Seshadri constants at the general point on many smooth polarized toric surfaces. We consider the case when the degree of jet separation is small or the core of the associated polygon is a line segment. Our main result is that in this case the Seshadri constant at the general point can often be determined in terms of easily computable invariants of the surf...

متن کامل

Seshadri Constants on Symmetric Products of Curves

Let Xg = C (2) g be the second symmetric product of a very general curve of genus g. We reduce the problem of describing the ample cone on Xg to a problem involving the Seshadri constant of a point on Xg−1. Using this we recover a result of Ciliberto-Kouvidakis that reduces finding the ample cone of Xg to the Nagata conjecture when g ≥ 9. We also give new bounds on the the ample cone of Xg when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 1998

ISSN: 0025-5874

DOI: 10.1007/pl00004388