Representation of pseudo-lattice ordered vector spaces
نویسندگان
چکیده
منابع مشابه
Ordered Vector Spaces
Simple consequences of these assumptions are: x>y implies x+z >y+z;x>y implies Xx>Xy for real positive scalarsX; x > 0 if and only if 0>-x. An important class of examples of such V's is due to R. Thrall ; we shall call these spaces lexicographic function spaces (LFS), defining them as follows: Let T be any simply ordered set ; let / be any real-valued function on T taking nonzero values on at m...
متن کاملAn Approximation Property Characterizes Ordered Vector Spaces with Lattice-ordered Duals
This note announces that a simple approximation property, known to hold in large classes of partially ordered locally convex spaces whose duals are lattice ordered (e.g., [Banach or] Fréchet spaces with closed, normal, generating positive cones possessing the Riesz decomposition property), actually characterizes spaces with lattice-ordered duals. Some very mild and natural assumptions about the...
متن کاملGroups definable in ordered vector spaces over ordered division rings
Let M = 〈M, +, <, 0, {λ}λ∈D〉 be an ordered vector space over an ordered division ring D, and G = 〈G,⊕, eG〉 an n-dimensional group definable in M. We show that if G is definably compact and definably connected with respect to t-topology, then it is definably isomorphic to a ‘definable quotient group’ U/L, for some convex W -definable subgroup U of 〈Mn, +〉 and a lattice L of rank n. As two conseq...
متن کاملMonotone Comparative Statics in Ordered Vector Spaces
This paper considers ordered vector spaces with arbitrary closed cones and establishes a number of characterization results with applications to monotone comparative statics (Topkis (1978), Topkis (1998), Milgrom and Shannon (1994)). By appealing to the fundamental theorem of calculus for the Henstock-Kurzweil integral, we generalize existing results on increasing differences and supermodularit...
متن کاملRisk Neutrality and Ordered Vector Spaces
The following result clarifies when preferences over time and under risk correspond to discounting and are not risk neutral. If a binary relation on a real vector space V satisfies four axioms, then there is a utility function U = f ◦ u : V → R where u : V → R is linear as a map of vector spaces and f : R → R is continuous and weakly monotone. Three axioms are familiar: weak ordering, continuit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1979
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788700012088