REPRESENTATION OF SOME BINOMIAL COEFFICIENTS BY POLYNOMIALS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Congruences Involving Binomial Coefficients

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that Tp−1 ≡ (p 3 ) 3p−1 (mod p), where the central trinomial coefficient Tn is the constant term in the expansion of (1 + x + x−1)n. We also prove three congruences modulo p conjectured by Sun, one of which is p−1 ∑ k=0 ( p− 1 k )( 2k k ) ((−1) − (−3)−k) ≡ (p 3 ) (3p−1 −...

متن کامل

Binomial Coefficients and Littlewood–Richardson Coefficients for Jack Polynomials

In this paper, we consider translation and multiplication operators acting on the rings of symmetric and nonsymmetric polynomials and study their matrix coefficients with respect to the bases of Jack polynomials and interpolation polynomials. The main new insight is that the symmetric and nonsymmetric cases share a key combinatorial feature, that of a locally finite graded poset with a minimum ...

متن کامل

Some Congruence Properties of Binomial Coefficients

Using elementary methods, the following results are obtalned:(1) If p is n n-m prime, 0 m n, 0 < b < ap n-m, and p ab, then (m) (-I)P-I(apb (rood pn). 2 A2_4B If r,s are the roots of x Ax-B, where (A,B) and D > 0, if n n u v rn+s n, and k > O, then (II) v =v (rood pn). n r-s n kpn kpn-1 (III) If p is odd and p D, then u (_D) u (rood pn); kp n P kp n-I (IV) u (_1)Bu n) n n-I (rood 2 k2 k2

متن کامل

Some Super Congruences Involving Binomial Coefficients

Let p > 3 be a prime. We show that T p−1 ≡ p 3 3 p−1 (mod p 2), where the central trinomial coefficient T n is the constant term in the expansion of (1+x+x −1) n. We also prove three congruences conjectured by Sun one of which is as follows: p−1 k=0 p − 1 k 2k k ((−1) k − (−3) −k) ≡ p 3 (3 p−1 − 1) (mod p 3).

متن کامل

Some congruences involving central q-binomial coefficients

Motivated by recent works of Sun and Tauraso, we prove some variations on the Green-Krammer identity involving central q-binomial coefficients, such as n−1 ∑ k=0 (−1)kq−(k+1 2 ) [ 2k k ] q ≡ (n 5 ) q−bn 4/5c (mod Φn(q)), where ( n p ) is the Legendre symbol and Φn(q) is the nth cyclotomic polynomial. As consequences, we deduce that 3am−1 ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2007

ISSN: 1015-8634

DOI: 10.4134/bkms.2007.44.4.677