Research on the Effectiveness of Deep Convolutional Neural Network for Electromagnetic Interference Identification Based on I/Q Data
نویسندگان
چکیده
With the development of wireless communication technology, electromagnetic interference (EMI) artificial radio to weather radar increases significantly, which has a serious impact on quality data. Most research detecting and suppressing was based primary product radar. This paper researches effectiveness deep convolutional neural networks (DCNN) identify suppress I/Q data output from front end receiver. Firstly, this selected UNet, ResNet with UNet structure, DeepLab V3+ for semantic segmentation other signals. After segmentation, used linear interpolation method EMI. Finally, prediction precision model compared products before after EMI suppression evaluate DCNN. The results showed that all three models could effectively were improved suppression. It suggests use DCNN receiver can play certain effect identification interference.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولa study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension
این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملVideo retrieval based on deep convolutional neural network
Recently, with the enormous growth of online videos, fast video retrieval research has received increasing attention. As an extension of image hashing techniques, traditional video hashing methods mainly depend on hand-crafted features and transform the realvalued features into binary hash codes. As videos provide far more diverse and complex visual information than images, extracting features ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Atmosphere
سال: 2022
ISSN: ['2073-4433']
DOI: https://doi.org/10.3390/atmos13111785