Resolution of an integral equation with the Thue–Morse sequence

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Integral Equation

In the recent paper [2], the authors obtained new proofs on the existence and uniqueness of the solution of the Volterra linear equation. Applying their results, in this paper we express the exact and approximate solution of the equation in the field of Mikusi´nski operators, F, which corresponds to an integro–differential equation.

متن کامل

SOLUTION OF AN INVERSE PARABOLIC PROBLEM WITH UNKNOWN SOURCE-FUNCTION AND NONCONSTANT DIFFUSIVITY VIA THE INTEGRAL EQUATION METHODS

In this paper, a nonlinear inverse problem of parabolic type, is considered. By reducing this inverse problem to a system of Volterra integral equations the existence, uniqueness, and stability of the solution will be shown.

متن کامل

Numerical Analysis of the Telegraph Equation with an Integral Condition

In this paper, an alternative method for accurately and efficiently modeling for the onedimensional Telegraph equation that combines classical and integral boundary conditions is presented. New matrix formulation technique with arbitrary polynomial bases is proposed for the numerical/analytical solution of this kind of partial differential equation. Not only the exact solutions have been achiev...

متن کامل

Random fixed point theorems with an application to a random nonlinear integral equation

In this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. We discuss also the existence of a solution to a nonlinear random integral equation in Banah spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2012

ISSN: 0019-3577

DOI: 10.1016/j.indag.2012.01.003