Resolvent and logarithmic residues of a singular operator pencil in Hilbert spaces
نویسندگان
چکیده
The present paper considers the operator pencil A ( λ ) = 0 + 1 , where ≠ are bounded linear mappings between complex Hilbert spaces and is neither one-to-one nor onto. Assuming that an isolated singularity of image closed, certain operators defined recursively starting from they shown to provide a characterization null space in principal part resolvent logarithmic residues at 0. relations with classical results based on ascent descent [10] discussed. In special case being Fredholm index 0, characterize rank resolvent, dimension subspaces define descent, partial multiplicities, algebraic multiplicity
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولOperator-valued bases on Hilbert spaces
In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملHilbert spaces expanded with a unitary operator
We study Hilbert spaces expanded with a unitary operator with a countable spectrum. We show the theory of such a structure is ω-stable and has quantifier elimination.
متن کاملInterpolation between Hilbert , Banach and Operator spaces
Motivated by a question of Vincent Lafforgue, we study the Banach spaces X satisfying the following property: there is a function ε → ∆ X (ε) tending to zero with ε > 0 such that every operator T : L 2 → L 2 with T ≤ ε that is simultaneously contractive (i.e. of norm ≤ 1) on L 1 and on L ∞ must be of norm ≤ ∆ X (ε) on L 2 (X). We show that ∆ X (ε) ∈ O(ε α) for some α > 0 iff X is isomorphic to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2022
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2022.01.013