ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification
نویسندگان
چکیده
منابع مشابه
Using Oblique Decision Trees for the Morphological Classification of Galaxies
We discuss the application of a class of machine learning algorithms known as decision trees to the process of galactic classification. In particular, we explore the application of oblique decision trees induced with different impurity measures to the problem of classifying galactic morphology data provided by Storrie-Lombardi et al. (1992). Our results are compared to those obtained by a neura...
متن کاملGeneralized neural trees for pattern classification
In this paper, a new neural tree (NT) model, the generalized NT (GNT), is presented. The main novelty of the GNT consists in the definition of a new training rule that performs an overall optimization of the tree. Each time the tree is increased by a new level, the whole tree is reevaluated. The training rule uses a weight correction strategy that takes into account the entire tree structure, a...
متن کاملResource-aware junction trees for efficient multi-agent coordination
In this paper we address efficient decentralised coordination of cooperative multi-agent systems by taking into account the actual computation and communication capabilities of the agents. We consider coordination problems that can be framed as Distributed Constraint Optimisation Problems, and as such, are suitable to be deployed on large scale multi-agent systems such as sensor networks or mul...
متن کاملResource-Efficient Hardware Implementation of a Neural-based Node for Automatic Fingerprint Classification
Modern mobile communication networks and Internet of Things are paving the way to ubiquitous and mobile computing. On the other hand, several new computing paradigms, such as edge computing, demand for high computational capabilities on specific network nodes. Ubiquitous environments require a large number of distributed user identification nodes enabling a secure platform for resources, servic...
متن کاملAn Algorithm for Resource Allocation through the Classification of DMUs
Data envelopment analysis (DEA) is a non-parametric method for assessing relative efficiency of decision-making units (DMUs). Every single decision-maker with the use of inputs produces outputs. These decision-making units will be defined by the production possibility set. Resource allocation to DMUs is one of the concerns of managers since managers can employ the results of this process to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Biomedical Circuits and Systems
سال: 2020
ISSN: 1932-4545,1940-9990
DOI: 10.1109/tbcas.2020.3004544