Reverse forms of a convex matrix inequality
نویسندگان
چکیده
منابع مشابه
A Reverse Isoperimetric Inequality for Convex Plane Curves∗
In this note we present a reverse isoperimetric inequality for closed convex curves, which states that if γ is a closed strictly convex plane curve with length L and enclosing an area A, then one gets L ≤ 4π(A+ |Ã|), where à denotes the oriented area of the domain enclosed by the locus of curvature centers of γ, and the equality holds if and only if γ is a circle. MSC 2000: 52A38, 52A40
متن کاملOn a New Reverse Hilbert\'s Type Inequality
In this paper, by using the Euler-Maclaurin expansion for the Riemann-$zeta$ function, we establish an inequality of a weight coefficient. Using this inequality, we derive a new reverse Hilbert's type inequality. As an applications, an equivalent form is obtained.
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)00300-3