Revisiting the approximate Carathéodory problem via the Frank-Wolfe algorithm

نویسندگان

چکیده

The approximate Carathéodory theorem states that given a compact convex set $${\mathcal {C}}\subset {\mathbb {R}}^n$$ and $$p\in [2,+\infty [$$ , each point $$x^*\in {\mathcal {C}}$$ can be approximated to $$\epsilon $$ -accuracy in the $$\ell _p$$ -norm as combination of {O}}(pD_p^2/\epsilon ^2)$$ vertices where $$D_p$$ is diameter -norm. A solution satisfying these properties built using probabilistic arguments or by applying mirror descent dual problem. We revisit problem solving primal via Frank-Wolfe algorithm, providing simplified analysis leading an efficient practical method. Furthermore, improved cardinality bounds are derived naturally existing convergence rates algorithm different scenarios, when $$x^*$$ interior subset with small diameter, uniformly convex. also propose [1,2[\cup \{+\infty \}$$ nonsmooth variant algorithm. Lastly, we address finding sparse projections onto -norm, [1,+\infty ]$$ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

k-Means Clustering via the Frank-Wolfe Algorithm

We show that k-means clustering is a matrix factorization problem. Seen from this point of view, k-means clustering can be computed using alternating least squares techniques and we show how the constrained optimization steps involved in this procedure can be solved efficiently using the Frank-Wolfe algorithm.

متن کامل

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization

We provide stronger and more general primal-dual convergence results for FrankWolfe-type algorithms (a.k.a. conditional gradient) for constrained convex optimization, enabled by a simple framework of duality gap certificates. Our analysis also holds if the linear subproblems are only solved approximately (as well as if the gradients are inexact), and is proven to be worst-case optimal in the sp...

متن کامل

Correcting Covariate Shift with the Frank-Wolfe Algorithm

Covariate shift is a fundamental problem for learning in non-stationary environments where the conditional distribution ppy|xq is the same between training and test data while their marginal distributions ptrpxq and ptepxq are different. Although many covariate shift correction techniques remain effective for real world problems, most do not scale well in practice. In this paper, using inspirat...

متن کامل

On the Extensions of Frank - Wolfe Theorem

In this paper we consider optimization problems de ned by a quadratic objective function and a nite number of quadratic inequality constraints. Given that the objective function is bounded over the feasible set, we present a comprehensive study of the conditions under which the optimal solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we rst prove a gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2021

ISSN: ['0025-5610', '1436-4646']

DOI: https://doi.org/10.1007/s10107-021-01735-x