Rings of homogeneous functions
نویسندگان
چکیده
منابع مشابه
Homogeneous Weights and Möbius Functions on Finite Rings
The homogeneous weights and the Möbius functions and Euler phifunctions on finite rings are discussed; some computational formulas for these functions on finite principal ideal rings are characterized; for the residue rings of integers, they are reduced to the classical number-theoretical Möbius functions and the classical number-theoretical Euler phi-functions.
متن کاملA class of Artinian local rings of homogeneous type
Let $I$ be an ideal in a regular local ring $(R,n)$, we will find bounds on the first and the last Betti numbers of $(A,m)=(R/I,n/I)$. if $A$ is an Artinian ring of the embedding codimension $h$, $I$ has the initial degree $t$ and $mu(m^t)=1$, we call $A$ a {it $t-$extended stretched local ring}. This class of local rings is a natural generalization of the class of stretched ...
متن کاملGeneralized Rings of Measurable and Continuous Functions
This paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.
متن کاملa class of artinian local rings of homogeneous type
let $i$ be an ideal in a regular local ring $(r,n)$, we will find bounds on the first and the last betti numbers of $(a,m)=(r/i,n/i)$. if $a$ is an artinian ring of the embedding codimension $h$, $i$ has the initial degree $t$ and $mu(m^t)=1$, we call $a$ a {it $t-$extended stretched local ring}. this class of local rings is a natural generalization of the class of stretched ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1998
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(96)00098-9