Robust Classification Using Contractive Hamiltonian Neural ODEs
نویسندگان
چکیده
Deep neural networks can be fragile and sensitive to small input perturbations that might cause a significant change in the output. In this letter, we employ contraction theory improve robustness of ODEs (NODEs). A dynamical system is contractive if all solutions with different initial conditions converge each other exponentially fast. As consequence, become less relevant over time. Since NODEs data corresponds condition systems, show contractivity mitigate effect perturbations. More precisely, inspired by Hamiltonian dynamics, propose class (CH-NODEs). By properly tuning scalar parameter, CH-NODEs ensure design trained using standard backpropagation. Moreover, enjoy built-in guarantees non-exploding gradients, which well-posed training process. Finally, demonstrate on MNIST image classification problem noisy test data.
منابع مشابه
Robust Stability for Parametric Linear ODEs
Content: A logical tool in robust control theory for systems of parametric inhomogeneous linear ODEs.
متن کاملRobust Online Hamiltonian Learning
Christopher E. Granade∗,1, 2 Christopher Ferrie, 3 Nathan Wiebe, and D.G. Cory 4, 5 1 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada 2 Department of Physics, University of Waterloo, Waterloo, Ontario, Canada 3 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada 4 Department of Chemistry, University of Waterloo, Waterloo, Ontar...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Robust Nonlinear Control using Neural
In this article, the innuence of uncertainty on weights and biases of neural networks on the input/output behavior is investigated. Moreover, a uncertainty description of uncertain neural networks is derived and an appropriate norm bound of the model uncertainty , which is needed for robust control design, is derived. Finally, feedback linearization is used in order to fully incorporate neural ...
متن کاملLearning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics Abstract Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics
Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics Kiam Choo Master of Science Graduate Department of Computer Science University of Toronto 2000 We consider a feedforward neural network model with hyperparameters controlling groups of weights. Given some training data, the posterior distribution of the weights and the hyperparameters can be obtained by alternately up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Control Systems Letters
سال: 2023
ISSN: ['2475-1456']
DOI: https://doi.org/10.1109/lcsys.2022.3186959