Robust collaborative object transportation using multiple MAVs
نویسندگان
چکیده
منابع مشابه
Robust Collaborative Object Transportation Using Multiple MAVs
Collaborative object transportation using multiple Micro Aerial Vehicles (MAVs) with limited communication is a challenging problem. In this paper we address the problem of multiple MAVs mechanically coupled to a bulky object for transportation purposes without explicit communication between agents. The apparent physical properties of each agent are reshaped to achieve robustly stable transport...
متن کاملCollaborative Object Transportation Using MAVs via Passive Force Control
This paper shows a strategy based on passive force control for collaborative object transportation using Micro Aerial Vehicles (MAVs), focusing on the transportation of a bulky object by two hexacopters. The goal is to develop a robust approach which does not rely on: (a) communication links between the MAVs, (b) the knowledge of the payload shape and (c) the position of grasping point. The pro...
متن کاملRobust sequential view planning for object recognition using multiple cameras
In this thesis the problem of object recognition/pose estimation using active sensing is investigated. It is assumed that multiple cameras acquire images from different view angles of an object belonging to a set of a priori known objects. The eigenspace method is used to process the sensory observations and produce an abstract measurement vector. This step is necessary to avoid the manipulatio...
متن کاملRobust Onboard Visual SLAM for Autonomous MAVs
This paper presents a visual simultaneous localization and mapping (SLAM) system consisting of a robust visual odometry and an efficient back-end with loop closure detection and pose-graph optimization. Robustness of the visual odometry is achieved by utilizing dual cameras pointing different directions with no overlap in their respective fields of view mounted on an micro aerial vehicle (MAV)....
متن کاملMultiple Feature Integration for Robust Object Localization
This paper presents a methodology for localization of manmade objects in complex scenes by learning multiple feature models in images. The methodology is based on a modular structure consisting of multiple classifiers, each of which solves the problem independently based on its input observations. Each classifier module is trained to detect manmade object regions and a higher order decision int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Robotics Research
سال: 2019
ISSN: 0278-3649,1741-3176
DOI: 10.1177/0278364919854131