Robust identification of molecular phenotypes using semi-supervised learning
نویسندگان
چکیده
منابع مشابه
Author Identification Using Semi-supervised Learning
Author identification models fall into two major categories according to the way they handle the training texts: profile-based models produce one representation per author while instance-based models produce one representation per text. In this paper, we propose an approach that combines two well-known representatives of these categories, namely the Common nGrams method and a Support Vector Mac...
متن کاملRobust Semi-Supervised Learning through Label Aggregation
Semi-supervised learning is proposed to exploit both labeled and unlabeled data. However, as the scale of data in real world applications increases significantly, conventional semisupervised algorithms usually lead to massive computational cost and cannot be applied to large scale datasets. In addition, label noise is usually present in the practical applications due to human annotation, which ...
متن کاملRobust Semi-supervised Learning for Biometrics
To deal with the problem of sensitivity to noise in semi-supervised learning for biometrics, this paper proposes a robust Gaussian-Laplacian Regularized (GLR) framework based on maximum correntropy criterion (MCC), called GLR-MCC, along with its convergence analysis. The half quadratic (HQ) optimization technique is used to simplify the correntropy optimization problem to a standard semi-superv...
متن کاملActive + Semi-supervised Learning = Robust Multi-View Learning
In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated (i.e., every example is identically labeled by the target concepts in eac...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2019
ISSN: 1471-2105
DOI: 10.1186/s12859-019-2885-3