Robust location estimators in regression models with covariates and responses missing at random
نویسندگان
چکیده
منابع مشابه
Multi-index regression models with missing covariates at random
AMS subject classifications: 62H12 62G20 Keywords: Covariates missing at random Inverse selection probability Multi-index model Single-index model a b s t r a c t This paper considers estimation of the semiparametric multi-index model with missing covariates at random. A weighted estimating equation is suggested by invoking the inverse selection probability approach, and estimators of the indic...
متن کاملEfficiency transfer for regression models with responses missing at random
We consider independent observations on a random pair (X,Y ), where the response Y is allowed to be missing at random but the covariate vector X is always observed. We demonstrate that characteristics of the conditional distribution of Y given X can be estimated efficiently using complete case analysis, i.e., one can simply omit incomplete cases and work with an appropriate efficient estimator ...
متن کاملRobust Estimators for Random Coefficient Regression Models
Random coefficient regression models have received considerable attention, especially from econometricians. Previous work has assumed that the coefficients have normal distributions. The variances of the coefficients have, in previous papers, been estimated by maximum likelihood or by least squares methodology applied to the squared residuals from a preliminary (unweighted) fit. Maximum likelih...
متن کاملSieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random
Missing covariates are common in regression problems. We propose a new semiparametric method based on a fully nonparametric distribution for the missing covariates that are assumed to be missing at random. The method of sieve maximum likelihood estimation is used to obtain the estimators of the regression coefficients. These estimators are shown to be consistent and asymptotically normal with t...
متن کاملRandom Partition Models with Regression on Covariates.
Many recent applications of nonparametric Bayesian inference use random partition models, i.e. probability models for clustering a set of experimental units. We review the popular basic constructions. We then focus on an interesting extension of such models. In many applications covariates are available that could be used to a priori inform the clustering. This leads to random clustering models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonparametric Statistics
سال: 2020
ISSN: 1048-5252,1029-0311
DOI: 10.1080/10485252.2020.1834108