Robust regression for electricity demand forecasting against cyberattacks

نویسندگان

چکیده

Standard methods for forecasting electricity loads are not robust to cyberattacks on demand data, potentially leading severe consequences such as major economic loss or a system blackout. Methods required that can handle under these conditions and detect outliers would otherwise go unnoticed. The key challenge is remove many possible while maintaining enough clean data use in the regression. In this paper we investigate approaches with data-driven tuning parameters, particular present an adaptive trimmed regression method better provide improved forecasts. general, perform much than their fixed parameter counterparts. Recommendations future work provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demand Forecasting for Electricity

Introduction Forecasting demand is both a science and an art. Econometric methods of forecasting, in the context of energy demand forecasting, can be described as ‘the science and art of specification, estimation, testing and evaluation of models of economic processes’ that drive the demand for fuels. The need and relevance of forecasting demand for an electric utility has become a much-discuss...

متن کامل

Forecasting Uncertainty in Electricity Demand

Generalized Additive Models (GAM) are a widely popular class of regression models to forecast electricity demand, due to their high accuracy, flexibility and interpretability. However, the residuals of the fitted GAM are typically heteroscedastic and leptokurtic caused by the nature of energy data. In this paper we propose a novel approach to estimate the time-varying conditional variance of th...

متن کامل

Challenges in forecasting peak electricity demand

We want to forecast the peak electricity demand in a half-hour period in twenty years time. We have fifteen years of half-hourly electricity data, temperature data and some economic and demographic data. The location is South Australia: home to the most volatile electricity demand in the world.

متن کامل

Electricity Demand Forecasting using Gaussian Processes

We present an electricity demand forecasting algorithm based on Gaussian processes. By introducing a taskspecific, custom covariance function kpower , which incorporates all available seasonal information as well as weather data, we are able to make accurate predictions of power consumption and renewable energy production. The hyper-parameters of the Gaussian process are optimized automatically...

متن کامل

Household electricity demand estimation: a regression discontinuity design approach

Estimating electricity demand elasticity in different sectors has been an essential research topic. Considering the fact that pricing electricity in various countries does not follow the same rules, many econometrics methods have been developed to estimate this crucial parameter. Electricity demand elasticity is defined as the percent change in electricity consumption in response to one percent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Forecasting

سال: 2022

ISSN: ['1872-8200', '0169-2070']

DOI: https://doi.org/10.1016/j.ijforecast.2022.10.004