Robust regression with high coverage

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On robust regression with high-dimensional predictors.

We study regression M-estimates in the setting where p, the number of covariates, and n, the number of observations, are both large, but p ≤ n. We find an exact stochastic representation for the distribution of β = argmin(β∈ℝ(p)) Σ(i=1)(n) ρ(Y(i) - X(i')β) at fixed p and n under various assumptions on the objective function ρ and our statistical model. A scalar random variable whose determinist...

متن کامل

Robust High-Dimensional Linear Regression

The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of trainin...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

High Breakdown Point Robust Regression with Censored Data

In this paper, we propose a class of high breakdown point estimators for the linear regression model when the response variable contains censored observations. These estimators are robust against high-leverage outliers and they generalize the LMS (least median of squares), S, MM and τ -estimators for linear regression. An important contribution of this paper is that we can define consistent est...

متن کامل

Robust Ridge Regression for High-Dimensional Data

Ridge regression, being based on the minimization of a quadratic loss function, is sensitive to outliers. Current proposals for robust ridge regression estimators are sensitive to “bad leverage observations”, cannot be employed when the number of predictors p is larger than the number of observations n; and have a low robustness when the ratio p=n is large. In this paper a ridge regression esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2003

ISSN: 0167-7152

DOI: 10.1016/s0167-7152(03)00090-7