Roots of crosscap slides and crosscap transpositions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crosscap Numbers of Two-component Links

We define the crosscap number of a 2-component link as the minimum of the first Betti numbers of connected, nonorientable surfaces bounding the link. We discuss some properties of the crosscap numbers of 2-component links.

متن کامل

Concordance Crosscap Number of a Knot

We define the concordance crosscap number of a knot as the minimum crosscap number among all the knots concordant to the knot. The four-dimensional crosscap number is the minimum first Betti number of non-orientable surfaces smoothly embedded in 4-dimensional ball, bounding the knot. Clearly the 4-dimensional crosscap number is smaller than or equal to the concordance crosscap number. We constr...

متن کامل

Off - shell Crosscap State and Orientifold Planes

We show that a non-trivial dilaton condensation alters the dimensions of orientifold planes. An off-shell crosscap state which naturally interpolates between the usual onshell crosscap states and their T-duals plays an important role in the analysis. We present an explicit representation of the off-shell crosscap state on an RP 2 worldsheet in the gauge in which the worldsheet curvature in the ...

متن کامل

Crosscap States for Orientifolds of Euclidean AdS3

We propose the crosscap states for orientifolds of Euclidean AdS3. We show that our crosscap states reproduce the geometry of orientifolds, which is AdS2. The spectral density of open strings in the system with orientifold can be read from the Möbius strip amplitudes and is compared to that of the open strings stretched between branes and their mirrors. We also compute the Klein bottle amplitud...

متن کامل

Bounds on the Crosscap Number of Torus Knots

For a torus knot K, we bound the crosscap number c(K) in terms of the genus g(K) and crossing number n(K): c(K) ≤ ⌊(g(K) + 9)/6⌋ and c(K) ≤ ⌊(n(K)+16)/12⌋. The (6n− 2, 3) torus knots show that these bounds are sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Periodica Mathematica Hungarica

سال: 2017

ISSN: 0031-5303,1588-2829

DOI: 10.1007/s10998-017-0210-3