Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we introduce a rigorous computational approach to prove existence of rotation invariant patterns for nonlinear Laplace-Beltrami equation posed on the 2-sphere. After changing spherical coordinates, problem becomes singular second order boundary value (BVP) interval <inline-formula><tex-math id="M1">\begin{document}$ (0,\frac{\pi}{2}] $\end{document}</tex-math></inline-formula> with <i>removable</i> singularity at zero. The is removed by solving Taylor series id="M2">\begin{document}$ (0,\delta] (with id="M3">\begin{document}$ \delta small) while Chebyshev expansion used solve id="M4">\begin{document}$ [\delta,\frac{\pi}{2}] $\end{document}</tex-math></inline-formula>. two setups are incorporated in larger zero-finding form id="M5">\begin{document}$ F(a) = 0 id="M6">\begin{document}$ containing coefficients and series. id="M7">\begin{document}$ F solved rigorously using Newton-Kantorovich argument.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace-Beltrami eigenfunctions for deformation invariant shape representation

A deformation invariant representation of surfaces, the GPS embedding, is introduced using the eigenvalues and eigenfunctions of the Laplace-Beltrami differential operator. Notably, since the definition of the GPS embedding completely avoids the use of geodesic distances, and is based on objects of global character, the obtained representation is robust to local topology changes. The GPS embedd...

متن کامل

The conformally invariant Laplace-Beltrami operator and factor ordering

In quantum mechanics the kinetic energy term for a single particle is usually written in the form of the Laplace-Beltrami operator. This operator is a factor ordering of the classical kinetic energy. We investigate other relatively simple factor orderings and show that the only other solution for a conformally flat metric is the conformally invariant Laplace-Beltrami operator. For non-conformal...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Numerical approach for solving a class of nonlinear fractional differential equation

‎It is commonly accepted that fractional differential equations play‎ ‎an important role in the explanation of many physical phenomena‎. ‎For‎ ‎this reason we need a reliable and efficient technique for the‎ ‎solution of fractional differential equations‎. ‎This paper deals with‎ ‎the numerical solution of a class of fractional differential‎ ‎equation‎. ‎The fractional derivatives are described...

متن کامل

Laplace-Beltrami operator for Jack polynomials

We introduce a Laplace-Beltrami type operator on the Fock space of symmetric functions and show that the Jack symmetric functions are the only family of eigenvectors of the differential operator, thus giving a new characterization of Jack polynomials. This was achieved by explicit computation of its action on generalized homogeneous symmetric functions. Using this new method we give a combinato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of computational dynamics

سال: 2022

ISSN: ['2158-2491', '2158-2505']

DOI: https://doi.org/10.3934/jcd.2022005