Row-Sparse Discriminative Deep Dictionary Learning for Hyperspectral Image Classification
نویسندگان
چکیده
منابع مشابه
Hyperspectral image classification via contextual deep learning
Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorit...
متن کاملDiscriminative and Compact Dictionary Design for Hyperspectral Image Classification using Learning VQ Framework Sparse representation provides an efficient description for high-dimensional Hyperspectral Imagery
Discriminative and Compact Dictionary Design for Hyperspectral Image Classification using Learning VQ Framework Report Title Sparse representation provides an efficient description for high-dimensional Hyperspectral Imagery (HSI) and also encodes discriminative information useful for classification. However, due to the large size of typical HSI images, the naive way to construct a dictionary wi...
متن کاملDiscriminative Tensor Sparse Coding for Image Classification
A novel approach to learn a discriminative dictionary over a tensor sparse model is presented. A structural incoherence constraint between dictionary atoms from different classes is introduced to promote discriminating information into the dictionary. The incoherence term encourages dictionary atoms to be as independent as possible. In addition, we incorporate classification error into the obje...
متن کاملLearning Sparse Mixture Models for Discriminative Classification
Recently Saul and Lee proposed a mixture model for discriminative classification of non-negative data via non-negative matrix factorization for feature extraction. In order to improve the generalization, this paper considers a sparse version of the model. The basic idea is to minimize the sum of the weights of un-normalized mixture models for posterior distributions according to regularization ...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2018
ISSN: 1939-1404,2151-1535
DOI: 10.1109/jstars.2018.2877769