Saddlepoint Method to Cumulative Distribution Function for Poisson-Binomial Model
نویسندگان
چکیده
منابع مشابه
A hybrid method to find cumulative distribution function of completion time of GERT networks
This paper proposes a hybrid method to find cumulative distribution function (CDF) of completion time of GERT-type networks (GTN) which have no loop and have only exclusive-or nodes. Proposed method is cre-ated by combining an analytical transformation with Gaussian quadrature formula. Also the combined crude Monte Carlo simulation and combined conditional Monte Carlo simulation are developed a...
متن کاملUniform asymptotics of Poisson approximation to the Poisson-binomial distribution
New uniform asymptotic approximations with error bounds are derived for a generalized total variation distance of Poisson approximations to the Poisson-binomial distribution. The method of proof is also applicable to other Poisson approximation problems. MSC 2000 Subject Classifications: Primary 62E17; secondary 60C05.
متن کاملA comparison of the accuracy of saddlepoint conditional cumulative distribution function approximations
Consider a model parameterized by a scalar parameter of interest and a nuisance parameter vector. Inference about the parameter of interest may be based on the signed root of the likelihood ratio statistic R. The standard normal approximation to the conditional distribution of R typically has error of order O(n−1/2), where n is the sample size. There are several modifications for R, which reduc...
متن کاملSaddlepoint Approximations for Extended Poisson Process Models
The saddlepoint approximation to the probabilities of a general time-homogenous birth process, as derived by Daniels 6 , is revisited. Of interest is the accuracy of the approximation for extended Poisson process models constructed from state-dependent birth processes. Numerical calculations are used to examine the accuracy of the probability approximation for a range of state-dependent models,...
متن کاملMultivariate Poisson–Binomial approximation using Stein’s method
The paper is concerned with the accuracy in total variation of the approximation of the distribution of a sum of independent Bernoulli distributed random d–vectors by the product distribution with Poisson marginals which has the same mean. The best results, obtained using generating function methods, are those of Roos (1998, 1999). Stein’s method has so far yielded somewhat weaker bounds. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modern Applied Science
سال: 2013
ISSN: 1913-1852,1913-1844
DOI: 10.5539/mas.v7n6p101