Scalable Strategies for Computing with Massive Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Strategies for Computing with Massive Data

This paper presents two complementary statistical computing frameworks that address challenges in parallel processing and the analysis of massive data. First, the foreach package allows users of the R programming environment to define parallel loops that may be run sequentially on a single machine, in parallel on a symmetric multiprocessing (SMP) machine, or in cluster environments without plat...

متن کامل

A scalable bootstrap for massive data

The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets—which are increasingly prevalent— the computation of bootstrap-based quantities can be prohibitively demanding computationally. While variants such as subsampling and the m out of n bootstrap can be used in principle to reduce the cost of bootstrap computation...

متن کامل

Efficient Data Mining with Evolutionary Algorithms for Cloud Computing Application

With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...

متن کامل

Scalable Storage for Data-Intensive Computing

Cloud computing applications require a scalable, elastic and fault tolerant storage system. We survey how storage systems have evolved from the traditional distributed filesystems, peer-to-peer storage systems and how these ideas have been synthesized in current cloud computing storage systems. Then, we describe how metadata management can be improved for a file system built to support large sc...

متن کامل

Scalable Splitting of Massive Data Streams

Scalable execution of continuous queries over massive data streams often requires splitting input streams into parallel sub-streams over which query operators are executed in parallel. Automatic stream splitting is in general very difficult, as the optimal parallelization may depend on application semantics. To enable application specific stream splitting, we introduce splitstream functions whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Software

سال: 2013

ISSN: 1548-7660

DOI: 10.18637/jss.v055.i14