Scaling limit of the subdiffusive random walk on a Galton–Watson tree in random environment
نویسندگان
چکیده
We consider a random walk on Galton–Watson tree in environment, the subdiffusive case. prove convergence of renormalised height function towards continuous-time process spectrally positive strictly stable Lévy process, jointly with trace real coded by latter process.
منابع مشابه
A subdiffusive behaviour of recurrent random walk in random environment on a regular tree
We are interested in the random walk in random environment on an infinite tree. Lyons and Pemantle [11] give a precise recurrence/transience criterion. Our paper focuses on the almost sure asymptotic behaviours of a recurrent random walk (Xn) in random environment on a regular tree, which is closely related to Mandelbrot [13]’s multiplicative cascade. We prove, under some general assumptions up...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملScaling Limit of Loop-erased Random Walk
The loop-erased random walk (LERW) was first studied in 1980 by Lawler as an attempt to analyze self-avoiding walk (SAW) which provides a model for the growth of a linear polymer in a good solvent. The self-avoiding walk is simply a path on a lattice that does not visit the same site more than once. Proving things about the collection of all such paths is a formidable challenge to rigorous math...
متن کاملScaling Limit of Loop Erased Random Walk — a Naive Approach
We give an alternative proof of the existence of the scaling limit of loop-erased random walk which does not use Löwner’s differential equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Probability
سال: 2022
ISSN: ['0091-1798', '2168-894X']
DOI: https://doi.org/10.1214/21-aop1535