Schatten-von Neumann characteristic of infinite tridiagonal block operator matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants of Block Tridiagonal Matrices

A tridiagonal matrix with entries given by square matrices is a block tridiagonal matrix; the matrix is banded if off-diagonal blocks are upper or lower triangular. Such matrices are of great importance in numerical analysis and physics, and to obtain general properties is of great utility. The blocks of the inverse matrix of a block tridiagonal matrix can be factored in terms of two sets of ma...

متن کامل

Eigendecomposition of Block Tridiagonal Matrices

Block tridiagonal matrices arise in applied mathematics, physics, and signal processing. Many applications require knowledge of eigenvalues and eigenvectors of block tridiagonal matrices, which can be prohibitively expensive for large matrix sizes. In this paper, we address the problem of the eigendecomposition of block tridiagonal matrices by studying a connection between their eigenvalues and...

متن کامل

Lower Bounds for Eigenvalues of Schatten-von Neumann Operators

Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...

متن کامل

Schur multiplier projections on the von Neumann-Schatten classes

For 1 ≤ p < ∞ let Cp denote the usual von Neumann-Schatten ideal of compact operators on 2. The standard basis of Cp is a conditional one and so it is of interest to be able to identify the sets of coordinates for which the corresponding projection is bounded. In this paper we survey and extend the known classes of bounded projections of this type. In particular we show that some recent results...

متن کامل

On twisted factorizations of block tridiagonal matrices

Non-symmetric and symmetric twisted block factorizations of block tridiagonal matrices are discussed. In contrast to non-blocked factorizations of this type, localized pivoting strategies can be integrated which improves numerical stability without causing any extra fill-in. Moreover, the application of such factorizations for approximating an eigenvector of a block tridiagonal matrix, given an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics

سال: 2019

ISSN: 1303-5991

DOI: 10.31801/cfsuasmas.474512