Schur expansion of random-matrix reproducing kernels

نویسندگان

چکیده

We give expansions of reproducing kernels the Christoffel-Darboux type in terms Schur polynomials. For this, we use evaluations averages characteristic polynomials and random matrix ensembles. explicitly compute new averages, such as average a $q$-Laguerre ensemble, ensuing kernels. In addition to classical $q$-deformed cases on real line, extensions Dotsenko-Fateev integrals obtain expressions for complex plane. Moreover, known interplay between Wronskians Laguerre polynomials, Painlev\'e tau functions conformal block is discussed relationship expansion obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refinement of Reproducing Kernels

We continue our recent study on constructing a refinement kernel for a given kernel so that the reproducing kernel Hilbert space associated with the refinement kernel contains that with the original kernel as a subspace. To motivate this study, we first develop a refinement kernel method for learning, which gives an efficient algorithm for updating a learning predictor. Several characterization...

متن کامل

Duality by Reproducing Kernels

LetA be a determined or overdetermined elliptic differential operator on a smooth compact manifold X. Write A( ) for the space of solutions of the system Au= 0 in a domain X. Using reproducing kernels related to various Hilbert structures on subspaces of A( ), we show explicit identifications of the dual spaces. To prove the regularity of reproducing kernels up to the boundary of , we specify t...

متن کامل

Reproducing Kernels and Riccati Equations

The purpose of this article is to present a brief exposition of the role of Riccati equations in the theory of reproducing kernel spaces. In particular, we shall exhibit a connection between positive semidefinite solutions of matrix Riccati equations and a class of finite dimensional reproducing kernel Hilbert spaces of rational vector valued functions, and an analogous (but more general) conne...

متن کامل

Favard theorem for reproducing kernels

Consider for n = 0, 1, . . . the nested spaces Ln of rational functions of degree n at most with given poles 1/αi, |αi| < 1, i = 1, . . . , n. Let L = ∪0 Ln. Given a finite positive measure μ on the unit circle, we associate with it an inner product on L by 〈f, g〉 = ∫ fgdμ. Suppose kn(z, w) is the reproducing kernel for Ln, i.e., 〈f(z), kn(z, w)〉 = f(w), for all f ∈ Ln, |w| < 1, then it is know...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac2754