Selectivity of mRNA degradation by autophagy in yeast
نویسندگان
چکیده
منابع مشابه
Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast.
Autophagy is a catabolic process conserved among eukaryotes. Under nutrient starvation, a portion of the cytoplasm is non-selectively sequestered into autophagosomes. Consequently, ribosomes are delivered to the vacuole/lysosome for destruction, but the precise mechanism of autophagic RNA degradation and its physiological implications for cellular metabolism remain unknown. We characterized aut...
متن کاملAutophagy mediates nonselective RNA degradation in starving yeast.
During nitrogen starvation, a nonselective bulk degradation of cytosolic proteins and organelles including ribosomes, termed macro‐autophagy (hereafter termed autophagy), is induced. The precise mechanism of RNA degradation by this pathway has not been yet elucidated. In this issue of the The EMBO Journal, Huang et al characterize an autophagy‐dependent RNA catabolism in yeast and identify the ...
متن کاملInterrelations between translation and general mRNA degradation in yeast
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational i...
متن کاملThe transcriptional inhibitor thiolutin blocks mRNA degradation in yeast.
Thiolutin is commonly used as a general inhibitor of transcription in yeast. It has been used to calculate mRNA decay rates by stopping the transcription and then determining the relative abundance of individual mRNAs at different times after inhibition. We report here that thiolutin is also an inhibitor of mRNA degradation, and thus its use can lead to miscalculations of mRNA half-lives. The i...
متن کاملTurnover of organelles by autophagy in yeast.
Efficient detection and removal of superfluous or damaged organelles are crucial to maintain cellular homeostasis and to assure cell survival. Growing evidence shows that organelles or parts of them can be removed by selective subtypes of otherwise unselective macroautophagy and microautophagy. This requires both the adaptation of the core autophagic machinery and sophisticated mechanisms to re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2021
ISSN: 2041-1723
DOI: 10.1038/s41467-021-22574-6