Self-Organized Velocity Pulses of Dense Colloidal Suspensions in Microchannel Flow

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense colloidal suspensions under time-dependent shear.

We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity), we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear stress as an example, we derive ex...

متن کامل

Structure of colloidal gels during microchannel flow.

We investigate the structure and flow behavior of colloidal gels in microchannels using confocal microscopy. Silica particles are first coated with a cationic polyelectrolyte and then flocculated by the addition of an anionic polyelectrolyte. In the quiescent state, the suspension is an isotropic and homogeneous gel. Under shear flow, the suspension contains dense clusters that yield at intercl...

متن کامل

Self-organized criticality in sheared suspensions.

Recent studies reveal that suspensions of neutrally buoyant non-brownian particles driven by slow periodic shear can undergo a dynamical phase transition between a fluctuating irreversible steady state and an absorbing reversible state. Using a computer model, we show that such systems exhibit self-organized criticality when a finite particle sedimentation velocity v(s) is introduced. Under per...

متن کامل

Stability diagram for dense suspensions of model colloidal Al2O3 particles in shear flow.

In Al2O3 suspensions, depending on the experimental conditions, very different microstructures can be found, comprising fluidlike suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we in...

متن کامل

Active and Passive Particle Transport in Dense Colloidal Suspensions

Acknowledgments First, I would like to thank Prof. Matthias Fuchs for giving me the opportunity to work on the very interesting subject of the mode-coupling theory of the glass transition and especially to contribute to the exciting new developments in this field. I also acknowledge the opportunity to participate in different teaching and seminar activities, which helped me to learn unconventio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2017

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.119.018002