Self-Standing, Robust Membranes Made of Cellulose Nanocrystals (CNCs) and a Protic Ionic Liquid: Toward Sustainable Electrolytes for Fuel Cells

نویسندگان

چکیده

Energy-conversion devices based on the phenomenon of proton conduction, for example, polymer electrolyte membrane fuel cells (PEMFCs), require low cost and sustainable electrolytes with high ionic conductivity good mechanical properties under anhydrous conditions at temperatures up to 150 °C. Biopolymers possess an intrinsic thermomechanical stability but insufficient in dry state, which however may be imparted by a protic liquid (PIL). This work presents preparation composite membranes made cellulose nanocrystals (CNCs) PIL. The are thermally stable display within range 10–4–10–3 S/cm between 120 160 Moreover, analysis biopolymer’s apparent dimensions nanoscale reveals dependence CNCs’ defects, twisting, aggregation presence Preliminary tests using simple cell setup demonstrate response inlet H2 gas, generation electrical current. These findings provide solid groundwork further development future studies biopolymer/PIL energy applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Sulfonated Polystyrene/acrylate–ionic Liquid (Si-SPS/A–IL) Hybrid Membranes for Methanol Fuel Cells

In this paper, the silicon-containing sulfonated polystyrene/acrylate–ionic liquid (Si-SPS/A–IL)hybrid membranes was prepared to obtain the proton exchange membrane (PEM) materials withhigh methanol barrier and good selectivity. The Si-SPS/A–IL hybrid membranes characterized asthe function of IL to evaluate their potential as PEMs in direct methanol fuel cells (DMFCs).Fourdifferent Hybrid mater...

متن کامل

Functionalization of Cellulose Nanocrystals in Choline Lactate Ionic Liquid

Cellulose nanocrystals (CNCs) are valuable nanomaterials obtained from renewable resources. Their properties make them suitable for a wide range of applications, including polymer reinforcement. However, due to their highly hydrophilic character, it is necessary to modify their surface with non-polar functional groups before their incorporation into a hydrophobic polymer matrix. In this work, c...

متن کامل

Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis

Cellulose nanocrystals (CNCs) were isolated from corn stalk using sulfuric acid hydrolysis, and their morphology, chemical structure, and thermal stability properties were characterized. The CNCs had an average length of 120.2 ± 61.3 nm and diameter of 6.4 ± 3.1 nm (L/D = 18.7). The degree of crystallinity of the CNCs increased to 69.20% from the 33.20% crystallinity of raw corn stalk fiber, wh...

متن کامل

Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells

1.1 New type of solar cell: dye-sensitized solar cells (DSSCs) The rising price of fossil fuels, together with their rapid depletion and the pollution caused by their combustion, is forcing us to find sources of clean renewable energy. Fortunately, the supply of energy from the sun to the earth is gigantic, i.e., 3 × 1024 joule a year or about ten thousand times more than what mankind consumes ...

متن کامل

Ionic liquid electrolytes for dye-sensitized solar cells.

The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS applied energy materials

سال: 2021

ISSN: ['2574-0962']

DOI: https://doi.org/10.1021/acsaem.1c00452