Semi-Supervised Classification via Hypergraph Convolutional Extreme Learning Machine

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hessian semi-supervised extreme learning machine

Extreme learning machine (ELM) has emerged as an efficient and effective learning algorithm for classification and regression tasks. Most of the existing research on the ELMs mainly focus on supervised learning. Recently, researchers have extended ELMs for semi-supervised learning, in which they exploit both the labeled and unlabeled data in order to enhance the learning performances. They have...

متن کامل

Combinative hypergraph learning for semi-supervised image classification

Recent years have witnessed a surge of interest in hypergraph-based transductive image classification. Hypergraph-based transductive learning models the high-order relationship of samples by using a hyperedge to link multiple samples. In order to extend the high-order relationship of samples, we incorporate linear correlation of sparse representation to hypergraph learning framework to improve ...

متن کامل

Semi-Supervised Classification with Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

Extreme learning machine based supervised subspace learning

This paper proposes a novel method for supervised subspace learning based on Single-hidden Layer Feedforward Neural networks. The proposed method calculates appropriate network target vectors by formulating a Bayesian model exploiting both the labeling information available for the training data and geometric properties of the training data, when represented in the feature space determined by t...

متن کامل

Decision making via semi-supervised machine learning techniques

Semi-supervised learning (SSL) is a class of supervised learning tasks and techniques that also exploits the unlabeled data for training. SSL significantly reduces labeling related costs and is able to handle large data sets. The primary objective is the extraction of robust inference rules. Decision support systems (DSSs) who utilize SSL have significant advantages. Only a small amount of labe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2021

ISSN: 2076-3417

DOI: 10.3390/app11093867