Semiconductor materials and radiation detection

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiconductor materials and radiation detection.

While Si and Ge have become detection standards for X-ray and gamma-ray spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by one or more of their physical limitations; namely the need for ancillary cooling systems or bulky cryogenics, their modest stopping powers and radiation intolerance. Wide band-gap compounds offer the ability to oper...

متن کامل

New materials for radiation hard semiconductor detectors

We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed Super-LHC facility (SLHC). Tracking detectors operating at the SLHC in t...

متن کامل

Semiconductor Materials :-

The label semiconductor itself provides a hint as to its characteristics. The prefix semis normally applied to a range of levels midway between two limits. The term conductor is applied to any material that will support a generous flow of charge when a voltage source of limited magnitude is applied across its terminals. An insulator is a material that offers a very low level of conductivity und...

متن کامل

Microcavities in Semiconductor Materials

Positron beam and helium desorption techniques have been applied to different materials, in particular semiconductor materials, to determine the presence of defects. The positron technique yields values of the positron diffusion length and values of the Doppler broadening parameters. In principle, defect concentrations can be derived and an indication can be obtained about the nature of the def...

متن کامل

Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Synchrotron Radiation

سال: 2006

ISSN: 0909-0495

DOI: 10.1107/s0909049505033339