Semilinear elliptic equations and supercritical growth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bubble towers for supercritical semilinear elliptic equations

Abstract : We construct positive solutions of the semilinear elliptic problem ∆u + λu + up = 0 with Dirichet boundary conditions, in a bounded smooth domain Ω ⊂ RN (N ≥ 4), when the exponent p is supercritical and close enough to N+2 N−2 and the parameter λ ∈ R is small enough. As p → N+2 N−2 , the solutions have multiple blow up at finitely many points which are the critical points of a functi...

متن کامل

Non-existence and uniqueness results for supercritical semilinear elliptic equations

Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped and such that a Poincaré inequality holds but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in s...

متن کامل

Semilinear Elliptic Equations and Fixed Points

In this paper, we deal with a class of semilinear elliptic equation in a bounded domain Ω ⊂ R , N ≥ 3, with C boundary. Using a new fixed point result of the Krasnoselskii’s type for the sum of two operators, an existence principle of strong solutions is proved. We give two examples where the nonlinearity can be critical.

متن کامل

Partial Regularity for Weak Solutions of Semilinear Elliptic Equations with Supercritical Exponents

Let Ω be an open subset in R (n ≥ 3). In this paper, we study the partial regularity for stationary positive weak solutions of the equation (1.1) ∆u + h1(x)u + h2(x)u = 0 in Ω. We prove that if α > n+2 n−2 , and u ∈ H(Ω) ∩ L(Ω) is a stationary positive weak solution of (1.1), then the Hausdorff dimension of the singular set of u is less than n−2α+1 α−1 , which generalizes the main results in Pa...

متن کامل

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1987

ISSN: 0022-0396

DOI: 10.1016/0022-0396(87)90190-2