Semilinear elliptic equations with Hardy potential and subcritical source term

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Solutions to Semilinear Elliptic Equations with Hardy Potential and Exponential Nonlinearity

On a bounded smooth domain Ω ⊂ R we study solutions of a semilinear elliptic equation with an exponential nonlinearity and a Hardy potential depending on the distance to ∂Ω. We derive global a priori bounds of the Keller–Osserman type. Using a Phragmen–Lindelöf alternative for generalized sub and super-harmonic functions we discuss existence, nonexistence and uniqueness of so-called large solut...

متن کامل

”boundary Blowup” Type Sub-solutions to Semilinear Elliptic Equations with Hardy Potential

Semilinear elliptic equations which give rise to solutions blowing up at the boundary are perturbed by a Hardy potential μ/δ(x, ∂Ω). The size of this potential effects the existence of a certain type of solutions (large solutions): if μ is too small, then no large solution exists. The presence of the Hardy potential requires a new definition of large solutions, following the pattern of the asso...

متن کامل

Asymptotic Behavior of Solutions to Semilinear Elliptic Equations with Hardy Potential

Let Ω be an open bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, 0 ∈ Ω. We are concerned with the asymptotic behavior of solutions for the elliptic problem: (∗) −∆u− μu |x|2 = f(x, u), u ∈ H 0 (Ω), where 0 ≤ μ < ( N−2 2 )2 and f(x, u) satisfies suitable growth conditions. By Moser iteration, we characterize the asymptotic behavior of nontrivial solutions for problem (∗). In particular, we...

متن کامل

Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential

Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33

متن کامل

Existence of Nonnegative Solutions for Semilinear Elliptic Equations with Subcritical Exponents

where Ω is a bounded domain in R , N ≥ 3, with a smooth boundary ∂Ω and f : Ω× R× R → R. The existence of positive solutions to (1.1) in the case where f depends only on u and grows subcritically has been studied extensively in recent years (see the review article by Lions [3] and the references therein). In this paper, we establish the existence of nonnegative solutions to (1.1) where f has a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2017

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-017-1144-6