Semilinear evolution equations with distributed measures
نویسندگان
چکیده
منابع مشابه
Semilinear fractional elliptic equations involving measures
We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...
متن کاملSemilinear fractional elliptic equations with gradient nonlinearity involving measures
We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...
متن کاملOn approximate solutions of semilinear evolution equations
A general framework is presented to discuss the approximate solutions of an evolution equation in a Banach space, with a linear part generating a semigroup and a sufficiently smooth nonlinear part. A theorem is presented, allowing to infer from an approximate solution the existence of an exact solution. According to this theorem, the interval of existence of the exact solution and the distance ...
متن کاملGuiding-like functions for semilinear evolution equations with retarded nonlinearities
The paper deals with a semilinear evolution equation in a reflexive and separable Banach space. The non-linear term is multivalued, upper Carathéodory and it depends on a retarded argument. The existence of global almost exact, i.e. classical, solutions is investigated. The results are based on a continuation principle for condensing multifields and the required transversalities derive from the...
متن کاملSemilinear Parabolic Equations Involving Measures and Low Regularity Data
A detailed study of abstract semilinear evolution equations of the form u̇+Au = μ(u) is undertaken, where −A generates an analytic semigroup and μ(u) is a Banach space valued measure depending on the solution. Then it is shown that the general theorems apply to a variety of semilinear parabolic boundary value problems involving measures in the interior and on the boundary of the domain. These re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2015
ISSN: 1687-1812
DOI: 10.1186/s13663-015-0392-4