Semiparametric Bayesian models for human brain mapping
نویسندگان
چکیده
منابع مشابه
Semiparametric Bayesian models for human brain mapping
Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Ca...
متن کاملBayesian Semiparametric GARCH Models
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...
متن کاملBayesian Inference for Gaussian Semiparametric Multilevel Models
Bayesian inference for complex hierarchical models with smoothing splines is typically intractable, requiring approximate inference methods for use in practice. Markov Chain Monte Carlo (MCMC) is the standard method for generating samples from the posterior distribution. However, for large or complex models, MCMC can be computationally intensive, or even infeasible. Mean Field Variational Bayes...
متن کاملSemiparametric Bayesian Decision Models for Optimal Replacement
We present a Bayesian decision theoretic approach for developing replacament strategies. In so doing, we consider a semi-parametric model to describe the failure characteristics of systems by specifying a nonparametric form for cumulative intensity function and by taking into account effect of covariates by a parametric form. Use of a gamma process prior for the cumulative intensity function co...
متن کاملSemiparametric Bayesian Inference for Stochastic Frontier Models
In this paper we propose a semiparametric Bayesian framework for the analysis of stochastic frontiers and efficiency measurement. The distribution of inefficiencies is modelled nonparametrically through a Dirichlet process prior. We suggest prior distributions and implement a Bayesian analysis through an efficient Markov chain Monte Carlo sampler, which allows us to deal with practically releva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Modelling
سال: 2002
ISSN: 1471-082X,1477-0342
DOI: 10.1191/1471082x02st040oa