Semisymmetric contact metric manifolds of dimension $\geq 5$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries of Contact Metric Manifolds

We study the Lie algebra of infinitesimal isometries on compact Sasakian and K–contact manifolds. On a Sasakian manifold which is not a space form or 3– Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K–contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automor...

متن کامل

Ricci solitons in contact metric manifolds

In N(k)-contact metric manifolds and/or (k, μ)-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with V pointwise collinear with the structure vector field ξ are studied. Mathematics Subject Classification: 53C15, 53C25, 53A30.

متن کامل

On Contact Metric R-Harmonic Manifolds

In this paper we consider contact metric R-harmonic manifolds M with ξ belonging to (κ, μ)-nullity distribution. In this context we have κ ≤ 1. If κ < 1, then M is either locally isometric to the product E × S(4), or locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If κ = 1, then M is an Einstein-Sasakian manifold. Mathematics Subject Classification: 53C05, 5...

متن کامل

Contact Structures on 5–manifolds

Using recent work on high dimensional Lutz twists and families of Weinstein structures we show that any almost contact structure on a 5–manifold is homotopic to a contact structure.

متن کامل

Shape Dimension and Intrinsic Metric from Samples of Manifolds

We introduce the adaptive neighborhood graph as a data structure for modeling a smooth manifold M embedded in some Euclidean space . We assume that M is known to us only through a finite sample P ⊂ M , as it is often the case in applications. The adaptive neighborhood graph is a geometric graph on P . Its complexity is at most min{2O(k)n, n2}, where n = |P | and k = dim M , as opposed to the n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS

سال: 2018

ISSN: 1300-0098,1303-6149

DOI: 10.3906/mat-1612-107