Sensitivity analysis of a seismic risk scenario using sparse Chebyshev polynomial expansion

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global sensitivity analysis using sparse grid interpolation and polynomial chaos

Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evalua...

متن کامل

Sparse polynomial interpolation in Chebyshev bases

We study the problem of reconstructing a sparse polynomial in a basis of Chebyshev polynomials (Chebyshev basis in short) from given samples on a Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev basis, if it can be represented by a linear combination of M Chebyshev polynomials. For a polynomial with known and unknown Chebyshev sparsity, respectively, we present efficie...

متن کامل

Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion

Many mathematical and computational models used in engineering produce multivariate output that shows some degree of correlation. However, conventional approaches to Global Sensitivity Analysis (GSA) assume that the output variable is scalar. These approaches are applied on each output variable leading to a large number of sensitivity indices that shows a high degree of redundancy making the in...

متن کامل

Global sensitivity analysis via multi-fidelity polynomial chaos expansion

The presence of uncertainties are inevitable in engineering design and analysis, where failure in understanding their effects might lead to the structural or functional failure of the systems. The role of global sensitivity analysis in this aspect is to quantify and rank the effects of input random variables and their combinations to the variance of the random output. In problems where the use ...

متن کامل

Computable Function Representations Using Effective Chebyshev Polynomial

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions. Keywords—Approximation Theory, Chebyshev Polynomial, Computable Functions, Comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Journal International

سال: 2015

ISSN: 1365-246X,0956-540X

DOI: 10.1093/gji/ggu491