Separation and the existence theorem for second order nonlinear differential equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fuzzy Solution for Exact Second Order Fuzzy Differential Equation

In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...

متن کامل

Order-type existence theorem for second order nonlocal problems at resonance

‎This paper gives an abstract order-type existence theorem for second order nonlocal boundary value problems at resonance and obtain existence criteria for at least two positive solutions‎, ‎where $f$ is a continuous function‎. ‎Our results generalize or extend related results in the literature and give a positive answer to the question raised in the literature‎. ‎An example is given to illustr...

متن کامل

Existence of Homoclinic Orbit for Second-order Nonlinear Difference Equation

By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation ∆ [p(t)∆u(t − 1)] + f(t, u(t)) = 0 has at least one homoclinic orbit, where t ∈ Z, u ∈ R.

متن کامل

Existence of Solutions for a Nonlinear Fractional Order Differential Equation

Let D denote the Riemann-Liouville fractional differential operator of order α. Let 1 < α < 2 and 0 < β < α. Define the operator L by L = D − aD where a ∈ R. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem Lu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) = 0.

متن کامل

A RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION

Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2012

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2012.1.66