Sequence Determinants of E2-E6AP Binding Affinity and Specificity
نویسندگان
چکیده
منابع مشابه
The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules.
Cellulose binding modules (CBMs) potentiate the action of cellulolytic enzymes on insoluble substrates. Numerous studies have established that three aromatic residues on a CBM surface are needed for binding onto cellulose crystals and that tryptophans contribute to higher binding affinity than tyrosines. However, studies addressing the nature of CBM-cellulose interactions have so far failed to ...
متن کاملBinding Affinity and Specificity from Computational Studies
Computational methods available for the calculation of relative and absolute binding affinities (free energy simulations, continuum electrostatics, linear interaction energy approximations, and empirical solvation models) are reviewed together with recent applications to biological systems. The decomposability of the binding free energy into physically meaningful components is examined and resu...
متن کاملSequence specificity of the core-binding factor.
The core-binding factor (CBF) binds the conserved core motif in mammalian type C retrovirus enhancers. We analyzed the phosphate contacts made by CBF on the Moloney murine leukemia virus enhancer by ethylation interference assay. The phosphate contacts span 9 bp centered around the consensus core site. To examine the sequence preferences for CBF binding, we employed the technique of selected an...
متن کاملDeterminants of the Differential Antizyme-Binding Affinity of Ornithine Decarboxylase
Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding a...
متن کاملInferring joint sequence-structural determinants of protein functional specificity
Residues responsible for allostery, cooperativity, and other subtle but functionally important interactions remain difficult to detect. To aid such detection, we employ statistical inference based on the assumption that residues distinguishing a protein subgroup from evolutionarily divergent subgroups often constitute an interacting functional network. We identify such networks with the aid of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Molecular Biology
سال: 2007
ISSN: 0022-2836
DOI: 10.1016/j.jmb.2007.03.026