Sequential decision making with partially ordered preferences
نویسندگان
چکیده
منابع مشابه
Sequential decision making with partially ordered preferences
This paper presents new insights and novel algorithms for strategy selection in sequential decision making with partially ordered preferences; that is, where some strategies may be incomparable with respect to expected utility. We assume that incomparability amongst strategies is caused by indeterminacy/imprecision in probability values. We investigate six criteria for consequentialist strategy...
متن کاملAggregating Partially Ordered Preferences
Preferences are not always expressible via complete linear orders: sometimes it is more natural to allow for the presence of incomparable outcomes. This may hold both in the agents’ preference ordering and in the social order. In this article, we consider this scenario and study what properties it may have. In particular, we show that, despite the added expressivity and ability to resolve confl...
متن کاملLocal Computation Schemes with Partially Ordered Preferences
Many computational problems linked to uncertainty and preference management can be expressed in terms of computing the marginal(s) of a combination of a collection of valuation functions. Shenoy and Shafer showed how such a computation can be performed using a local computation scheme. A major strength of this work is that it is based on an algebraic description: what is proved is the correctne...
متن کاملInfluence diagrams with partially ordered preferences
Imprecision in probability values (represented through credal sets) allows a more realistic modelling of uncertainty in decision problems. Uncertainties often lead to partially ordered preferences and, consequently, different criteria of choice may be taken into account. In this paper, we present an algorithm that evaluates an extended version of influence diagrams, where chance variables repre...
متن کاملSoft Constraints with Partially Ordered Preferences
This paper constructs a logic of soft constraints where the set of degrees of preference forms a partially ordered set. When the partially ordered set is a distributive lattice, this reduces to the idempotent semiring-based CSP approach, and the lattice operations can be used to define a sound and complete proof theory. For the general case, it is shown how sound and complete deduction can be p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2011
ISSN: 0004-3702
DOI: 10.1016/j.artint.2010.11.017