Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers

نویسندگان

چکیده

Abstract In this paper, with the aid of Faà di Bruno formula and by virtue properties Bell polynomials second kind, authors define a kind notion degenerate Narumi numbers polynomials, establish explicit formulas for derive (degenerate) Cauchy numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Several Explicit and Recursive Formulas for the Generalized Motzkin Numbers

In the paper, the authors find two explicit formulas and recover a recursive formula for the generalized Motzkin numbers. Consequently, the authors deduce two explicit formulas and a recursive formula for the Motzkin numbers, the Catalan numbers, and the restricted hexagonal numbers respectively.

متن کامل

Explicit Formulas Involving q-Euler Numbers and Polynomials

and Applied Analysis 3 Similarly, the q-Bernoulli polynomials and numbers with weight 0 are defined, respectively, as B̃n,q x lim n→∞ 1 [ pn ] q pn−1 ∑ y 0 ( x y )n q

متن کامل

Explicit Formulas for Bernoulli and Euler Numbers

Explicit and recursive formulas for Bernoulli and Euler numbers are derived from the Faá di Bruno formula for the higher derivatives of a composite function. Along the way we prove a result about composite generating functions which can be systematically used to derive such identities.

متن کامل

Degenerate Changhee-Genocchi numbers and polynomials

*Correspondence: [email protected] 2Graduate School of Education, Konkuk University, Seoul, 143-701, Republic of Korea Full list of author information is available at the end of the article Abstract In this paper, we study some properties of degenerate Changhee-Genocchi numbers and polynomials and give some new identities of these polynomials and numbers which are derived from the generating ...

متن کامل

Degenerate Cauchy numbers of the third kind

Since Cauchy numbers were introduced, various types of Cauchy numbers have been presented. In this paper, we define degenerate Cauchy numbers of the third kind and give some identities for the degenerate Cauchy numbers of the third kind. In addition, we give some relations between four kinds of the degenerate Cauchy numbers, the Daehee numbers and the degenerate Bernoulli numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2021

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2021-0079