Seymour’s Conjecture on 2-Connected Graphs of Large Pathwidth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seymour's conjecture on 2-connected graphs of large pathwidth

We prove the conjecture of Seymour (1993) that for every apex-forest H1 and outerplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas (arXiv:1712.04549).

متن کامل

Circumference and Pathwidth of Highly Connected Graphs

Birmele [J Graph Theory 2003] proved that every graph with circumference t has treewidth at most t − 1. Under the additional assumption of 2-connectivity, such graphs have bounded pathwidth, which is a qualitatively stronger conclusion. Birmele’s theorem was extended by Birmele et al. [Combinatorica 2007] who showed that every graph without k disjoint cycles of length at least t has treewidth O...

متن کامل

From Pathwidth to Connected Pathwidth

It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width k computes a connected path decomposition of width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of ‘bags’ in the input path decomp...

متن کامل

Erdös Conjecture on Connected Residual Graphs

A graph G is said to be F-residual if for every point u in G, the graph obtained by removing the closed neighborhood of u from G is isomorphic to F. Similarly, if the remove of m consecutive closed neighborhoods yields Kn, then G is called m-Kn-residual graph. Erdös determine the minimum order of the m-Kn-residual graph for all m and n, the minimum order of the connected Kn-residual graph is fo...

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorica

سال: 2020

ISSN: 0209-9683,1439-6912

DOI: 10.1007/s00493-020-3941-3