Shape reconstruction by genetic algorithms and artificial neural networks
نویسندگان
چکیده
منابع مشابه
Shape reconstruction by genetic algorithms and artificial neural networks
This paper presents a new surface reconstruction method based on complex form functions, genetic algorithms and neural networks. Surfaces can be reconstructed in an analytical representation format. This representation is optimal in the sense of least-square fitting by predefined subsets of data points. The surface representations are achieved by evolution via repetitive application of crossove...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملComparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملUsing Genetic Algorithms to Optimize Artificial Neural Networks
Artificial Neural Networks (ANNs), as a nonlinear and adaptive information processing systems, play an important role in machine learning, artificial intelligence, and data mining. But the performance of ANNs is sensitive to the number of neurons, and chieving a better network performance and simplifying the network topology are two competing objectives. While Genetic Algorithms (GAs) is a kind...
متن کاملApplication of An Improved Genetic Algorithms in Artificial Neural Networks
This article proposed improved genetic algorithms(IGA) incorporates simulated annealing into a basic genetic algorithm with momentum that enables the algorithm to perform genetic search over the subspace of local optima. The computational results suggest that the IGA algorithm have good ability of solving the problem and the performance of IGA is very promising because it is able to find an opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Computations
سال: 2003
ISSN: 0264-4401
DOI: 10.1108/02644400310465281