Sharp bounds for Neuman means with applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Inequalities Involving Neuman–sándor and Logarithmic Means

Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are established. The bounding quantities are the one-parameter bivariate means called the p-means. In this paper best values of the parameters of the bounding means are obtained. Mathematics subject classification (2010): 26E60, 26D07, 26D20.

متن کامل

Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means

*Correspondence: [email protected] 2School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article Abstract In this paper, we present sharp bounds for the two Neuman means SHA and SCA derived from the Schwab-Borchardt mean in terms of convex combinations of either the weighted arithmetic and ...

متن کامل

The Optimal Convex Combination Bounds of Harmonic Arithmetic and Contraharmonic Means for the Neuman means

In the paper, we find the greatest values α1, α2, α3, α4 and the least values β1, β2, β3, β4 such that the double inequalities α1A(a, b) + (1− α1)H(a, b) < N ( A(a, b), G(a, b) ) < β1A(a, b) + (1− β1)H(a, b), α2A(a, b) + (1− α2)H(a, b) < N ( G(a, b), A(a, b) ) < β2A(a, b) + (1− β2)H(a, b), α3C(a, b) + (1− α3)A(a, b) < N ( Q(a, b), A(a, b) ) < β3C(a, b) + (1− β3)A(a, b), α4C(a, b) + (1− α4)A(a, ...

متن کامل

Refinements of Bounds for Neuman Means in Terms of Arithmetic and Contraharmonic Means

In this paper, we present the sharp upper and lower bounds for the Neuman means SAC and SCA in terms of the the arithmetic mean A and contraharmonic mean C . The given results are the improvements of some known results. Mathematics subject classification (2010): 26E60.

متن کامل

Sharp Recovery Bounds for Convex Demixing, with Applications

Demixing refers to the challenge of identifying two structured signals given only the sum of the two signals and prior information about their structures. Examples include the problem of separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis, and the problem of decomposing an observed matrix into a low-rank matrix plus a sparse m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.05.09