Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices

نویسندگان

چکیده

We present new upper and lower bounds for the numerical radius of a bounded linear operator defined on complex Hilbert space, which improve existing bounds. Among many other inequalities proved in this article, we show that non-zero $T$ space $H,$ $w(T)\geq \frac{\|T\|}{2}+\frac{m(T^2)}{2\|T\|}, $ where $w(T)$ is $m(T^2)$ Crawford number $T^2$. This substantially improves inequality \frac{\|T\|}{2} .$ also obtain some matrices illustrate with examples these are better than

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

Sharper Inequalities for Numerical Radius for Hilbert Space Operator

We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Inequalities for the Norm and Numerical Radius of Composite Operators in Hilbert Spaces

Some new inequalities for the norm and the numerical radius of composite operators generated by a pair of operators are given.

متن کامل

New Reverse Inequalities for the Numerical Radius of Normal Operators in Hilbert Spaces

Let (H ; 〈·, ·〉) be a complex Hilbert space and T : H → H a bounded linear operator on H. Recall that T is a normal operator if T T = TT . Normal operator T may be regarded as a generalisation of self-adjoint operator T in which T ∗ need not be exactly T but commutes with T [5, p. 15]. An equivalent condition with normality that will be extensively used in the following is that ‖Tx‖ = ‖T ∗x‖ fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2021

ISSN: ['1331-4343', '1848-9966']

DOI: https://doi.org/10.7153/mia-2021-24-12