Sharp polynomial estimate of integral points in right-angled simplices
نویسندگان
چکیده
منابع مشابه
An Upper Estimate of Integral Points in Real Simplices with an Application to Singularity Theory
Let ∆(a1, a2, · · · , an) be an n-dimensional real simplex with vertices at (a1, 0, · · · , 0), (0, a2, · · · , 0), · · · , (0, 0, · · · , an). Let P(a1,a2,··· ,an) be the number of positive integral points lying in ∆(a1, a2, · · · , an). In this paper we prove that n!P(a1,a2,··· ,an) ≤ (a1 − 1)(a2 − 1) · · · (an − 1). As a consequence we have proved the Durfee conjecture for isolated weighted ...
متن کاملMaximal integral simplices with no interior integer points
In this paper, we consider integral maximal lattice-free simplices. Such simplices have integer vertices and contain integer points in the relative interior of each of their facets, but no integer point is allowed in the full interior. In dimension three, we show that any integral maximal latticefree simplex is equivalent to one of seven simplices up to unimodular transformation. For higher dim...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملInterval Estimate for Specific Points in Polynomial Regressions
This paper presents the interval estimate for specific points in polynomial regression: zero of a linear regression, abscissa of the extreme of a quadratic regression, abscissa of the inflection point of a cubic regression. Two different approaches are under study. An application of these two approaches based on quadratic regression in presented: interval estimate for the plant density giving o...
متن کاملAbc Estimate, Integral Points, and Geometry of P minus Hyperplanes
Let K be a field and H be a set of hyperplanes in P n(K). When K is a function field, we show that the following are equivalent. (a) H is nondegenerate over K. (b) The height of the (S,H)-integral points of P n(K) − H is bounded. (c) P n K − H is an abc variety. When K is a number field and H is nondegenerate over K, we establish an explicit bound on the number of (S,H)-integral points of P n(K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2013
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2012.07.012