Sign-constancy of Green's functions for two-point impulsive boundary value problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS

In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.

متن کامل

Mixed Two-point Boundary-value Problems for Impulsive Differential Equations

In this article, we prove the existence of solutions to mixed twopoint boundary-value problem for impulsive differential equations by variational methods, in both resonant and the non resonant cases.

متن کامل

Multiple Sign-changing Solutions for Sub-linear Impulsive Three-point Boundary-value Problems

In this article, we study the existence of sign-changing solutions for some second-order impulsive boundary-value problem with a sub-linear condition at infinity. To obtain the results we use the Leray-Schauder degree and the upper and lower solution method.

متن کامل

Application of variational iteration method for solving singular two point boundary value problems

In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2019

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2019.2768