Simulating longer vectors of correlated binary random variables via multinomial sampling

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating longer vectors of correlated binary random variables via multinomial sampling

The ability to simulate correlated binary data is important for sample size calculation and comparison of methods for analysis of clustered and longitudinal data with dichotomous outcomes. One available approach for simulating length n vectors of dichotomous random variables is to sample from the multinomial distribution of all possible length n permutations of zeros and ones. However, the mult...

متن کامل

A Survey on Simulating Stable Random Variables

In general case, Chambers et al. (1976) introduced the following algorithm for simulating any stable random variables $ X/sim(alpha, beta, gamma, delta) $ with four parameters. They use a nonlinear transformation of two independent uniform random variables for simulating an stable random variable... (to continue, click here)

متن کامل

Simulating Bessel Random Variables

In this paper, we discuss efficient exact random variate generation for the Bessel distribution. The expected time of the algorithm is uniformly bounded over all choices of the parameters, and the algorithm avoids any computation of Bessel functions or Bessel ratios.

متن کامل

Multinomial-sampling models for random genetic drift.

Three different derivations of models with multinomial sampling of genotypes in a finite population are presented. The three derivations correspond to the operation of random drift through population regulation, conditioning on the total number of progeny, and culling, respectively. Generations are discrete and nonoverlapping; the diploid population mates at random. Each derivation applies to a...

متن کامل

Symmetrization of Binary Random Variables

A random variable Y is called an independent symmetrizer of a given random variable X if (a) it is independent of X and (b) the distribution of X + Y is symmetric about 0. In cases where the distribution of X is symmetric about its mean, it is easy to see that the constant random variable Y = −EX is a minimum-variance independent symmetrizer. Taking Y to have the same distribution as −X clearly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2017

ISSN: 0167-9473

DOI: 10.1016/j.csda.2017.04.002