Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field
نویسندگان
چکیده
منابع مشابه
Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field
Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drud...
متن کاملRepresentation of Ion–Protein Interactions Using the Drude Polarizable Force-Field
Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophisti...
متن کاملA valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field
A general molecular mechanics (MM) model for treating aqueous Cu(2+) and Zn(2+) ions was developed based on valence bond (VB) theory and incorporated into the atomic multipole optimized energetics for biomolecular applications (AMOEBA) polarizable force field. Parameters were obtained by fitting MM energies to that computed by ab initio methods for gas-phase tetra- and hexa-aqua metal complexes...
متن کاملDrude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.
Additive force fields are designed to account for induced electronic polarization in a mean-field average way, using effective empirical fixed charges. The limitation of this approximation is cause for serious concerns, particularly in the case of lipid membranes, where the molecular environment undergoes dramatic variations over microscopic length scales. A polarizable force field based on the...
متن کاملPolarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator
A polarizable empirical force field based on the classical Drude oscillator is presented for the hexopyranose form of selected monosaccharides. Parameter optimization targeted quantum mechanical (QM) dipole moments, solute-water interaction energies, vibrational frequencies, and conformational energies. Validation of the model was based on experimental data on crystals, densities of aqueous-sug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2010
ISSN: 1549-9618,1549-9626
DOI: 10.1021/ct900576a